Copied to
clipboard

G = (C2×C42)⋊D5order 320 = 26·5

2nd semidirect product of C2×C42 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C42)⋊2D5, C10.93(C4×D4), C2.20(C4×D20), (C2×C4).66D20, D10⋊C44C4, (C2×C20).448D4, C2.3(C207D4), C22.40(C2×D20), C10.57(C4⋊D4), C2.4(C4.D20), (C22×C4).400D10, C2.3(C422D5), C10.10C428C2, C10.5(C422C2), C10.13(C4.4D4), C22.49(C4○D20), C2.15(C42⋊D5), C54(C24.C22), (C23×D5).12C22, C23.273(C22×D5), C10.34(C42⋊C2), (C22×C20).479C22, (C22×C10).315C23, C10.56(C22.D4), C2.2(C23.23D10), (C22×Dic5).33C22, (C2×C4×C20)⋊1C2, C2.6(C4×C5⋊D4), (C2×C4).92(C4×D5), C22.120(C2×C4×D5), (C2×C20).381(C2×C4), (C2×C10.D4)⋊5C2, (C2×C10).148(C2×D4), C22.44(C2×C5⋊D4), (C2×C10).74(C4○D4), (C2×C4).213(C5⋊D4), (C2×Dic5).29(C2×C4), (C22×D5).24(C2×C4), (C2×D10⋊C4).12C2, (C2×C10).202(C22×C4), SmallGroup(320,567)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×C42)⋊D5
C1C5C10C2×C10C22×C10C23×D5C2×D10⋊C4 — (C2×C42)⋊D5
C5C2×C10 — (C2×C42)⋊D5
C1C23C2×C42

Generators and relations for (C2×C42)⋊D5
 G = < a,b,c,d,e | a2=b4=c4=d5=e2=1, ebe=ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 750 in 190 conjugacy classes, 71 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, D10, C2×C10, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C24.C22, C10.D4, D10⋊C4, D10⋊C4, C4×C20, C22×Dic5, C22×C20, C23×D5, C10.10C42, C2×C10.D4, C2×D10⋊C4, C2×C4×C20, (C2×C42)⋊D5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, D10, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C4.4D4, C422C2, C4×D5, D20, C5⋊D4, C22×D5, C24.C22, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C42⋊D5, C4×D20, C4.D20, C422D5, C4×C5⋊D4, C23.23D10, C207D4, (C2×C42)⋊D5

Smallest permutation representation of (C2×C42)⋊D5
On 160 points
Generators in S160
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 89 9 84)(2 90 10 85)(3 86 6 81)(4 87 7 82)(5 88 8 83)(11 96 16 91)(12 97 17 92)(13 98 18 93)(14 99 19 94)(15 100 20 95)(21 106 26 101)(22 107 27 102)(23 108 28 103)(24 109 29 104)(25 110 30 105)(31 116 36 111)(32 117 37 112)(33 118 38 113)(34 119 39 114)(35 120 40 115)(41 126 46 121)(42 127 47 122)(43 128 48 123)(44 129 49 124)(45 130 50 125)(51 136 56 131)(52 137 57 132)(53 138 58 133)(54 139 59 134)(55 140 60 135)(61 146 66 141)(62 147 67 142)(63 148 68 143)(64 149 69 144)(65 150 70 145)(71 156 76 151)(72 157 77 152)(73 158 78 153)(74 159 79 154)(75 160 80 155)
(1 64 24 44)(2 65 25 45)(3 61 21 41)(4 62 22 42)(5 63 23 43)(6 66 26 46)(7 67 27 47)(8 68 28 48)(9 69 29 49)(10 70 30 50)(11 71 31 51)(12 72 32 52)(13 73 33 53)(14 74 34 54)(15 75 35 55)(16 76 36 56)(17 77 37 57)(18 78 38 58)(19 79 39 59)(20 80 40 60)(81 141 101 121)(82 142 102 122)(83 143 103 123)(84 144 104 124)(85 145 105 125)(86 146 106 126)(87 147 107 127)(88 148 108 128)(89 149 109 129)(90 150 110 130)(91 151 111 131)(92 152 112 132)(93 153 113 133)(94 154 114 134)(95 155 115 135)(96 156 116 136)(97 157 117 137)(98 158 118 138)(99 159 119 139)(100 160 120 140)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)(41 46)(42 50)(43 49)(44 48)(45 47)(51 56)(52 60)(53 59)(54 58)(55 57)(61 66)(62 70)(63 69)(64 68)(65 67)(71 76)(72 80)(73 79)(74 78)(75 77)(81 91)(82 95)(83 94)(84 93)(85 92)(86 96)(87 100)(88 99)(89 98)(90 97)(101 111)(102 115)(103 114)(104 113)(105 112)(106 116)(107 120)(108 119)(109 118)(110 117)(121 136)(122 140)(123 139)(124 138)(125 137)(126 131)(127 135)(128 134)(129 133)(130 132)(141 156)(142 160)(143 159)(144 158)(145 157)(146 151)(147 155)(148 154)(149 153)(150 152)

G:=sub<Sym(160)| (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,89,9,84)(2,90,10,85)(3,86,6,81)(4,87,7,82)(5,88,8,83)(11,96,16,91)(12,97,17,92)(13,98,18,93)(14,99,19,94)(15,100,20,95)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155), (1,64,24,44)(2,65,25,45)(3,61,21,41)(4,62,22,42)(5,63,23,43)(6,66,26,46)(7,67,27,47)(8,68,28,48)(9,69,29,49)(10,70,30,50)(11,71,31,51)(12,72,32,52)(13,73,33,53)(14,74,34,54)(15,75,35,55)(16,76,36,56)(17,77,37,57)(18,78,38,58)(19,79,39,59)(20,80,40,60)(81,141,101,121)(82,142,102,122)(83,143,103,123)(84,144,104,124)(85,145,105,125)(86,146,106,126)(87,147,107,127)(88,148,108,128)(89,149,109,129)(90,150,110,130)(91,151,111,131)(92,152,112,132)(93,153,113,133)(94,154,114,134)(95,155,115,135)(96,156,116,136)(97,157,117,137)(98,158,118,138)(99,159,119,139)(100,160,120,140), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(41,46)(42,50)(43,49)(44,48)(45,47)(51,56)(52,60)(53,59)(54,58)(55,57)(61,66)(62,70)(63,69)(64,68)(65,67)(71,76)(72,80)(73,79)(74,78)(75,77)(81,91)(82,95)(83,94)(84,93)(85,92)(86,96)(87,100)(88,99)(89,98)(90,97)(101,111)(102,115)(103,114)(104,113)(105,112)(106,116)(107,120)(108,119)(109,118)(110,117)(121,136)(122,140)(123,139)(124,138)(125,137)(126,131)(127,135)(128,134)(129,133)(130,132)(141,156)(142,160)(143,159)(144,158)(145,157)(146,151)(147,155)(148,154)(149,153)(150,152)>;

G:=Group( (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,89,9,84)(2,90,10,85)(3,86,6,81)(4,87,7,82)(5,88,8,83)(11,96,16,91)(12,97,17,92)(13,98,18,93)(14,99,19,94)(15,100,20,95)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155), (1,64,24,44)(2,65,25,45)(3,61,21,41)(4,62,22,42)(5,63,23,43)(6,66,26,46)(7,67,27,47)(8,68,28,48)(9,69,29,49)(10,70,30,50)(11,71,31,51)(12,72,32,52)(13,73,33,53)(14,74,34,54)(15,75,35,55)(16,76,36,56)(17,77,37,57)(18,78,38,58)(19,79,39,59)(20,80,40,60)(81,141,101,121)(82,142,102,122)(83,143,103,123)(84,144,104,124)(85,145,105,125)(86,146,106,126)(87,147,107,127)(88,148,108,128)(89,149,109,129)(90,150,110,130)(91,151,111,131)(92,152,112,132)(93,153,113,133)(94,154,114,134)(95,155,115,135)(96,156,116,136)(97,157,117,137)(98,158,118,138)(99,159,119,139)(100,160,120,140), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(41,46)(42,50)(43,49)(44,48)(45,47)(51,56)(52,60)(53,59)(54,58)(55,57)(61,66)(62,70)(63,69)(64,68)(65,67)(71,76)(72,80)(73,79)(74,78)(75,77)(81,91)(82,95)(83,94)(84,93)(85,92)(86,96)(87,100)(88,99)(89,98)(90,97)(101,111)(102,115)(103,114)(104,113)(105,112)(106,116)(107,120)(108,119)(109,118)(110,117)(121,136)(122,140)(123,139)(124,138)(125,137)(126,131)(127,135)(128,134)(129,133)(130,132)(141,156)(142,160)(143,159)(144,158)(145,157)(146,151)(147,155)(148,154)(149,153)(150,152) );

G=PermutationGroup([[(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,89,9,84),(2,90,10,85),(3,86,6,81),(4,87,7,82),(5,88,8,83),(11,96,16,91),(12,97,17,92),(13,98,18,93),(14,99,19,94),(15,100,20,95),(21,106,26,101),(22,107,27,102),(23,108,28,103),(24,109,29,104),(25,110,30,105),(31,116,36,111),(32,117,37,112),(33,118,38,113),(34,119,39,114),(35,120,40,115),(41,126,46,121),(42,127,47,122),(43,128,48,123),(44,129,49,124),(45,130,50,125),(51,136,56,131),(52,137,57,132),(53,138,58,133),(54,139,59,134),(55,140,60,135),(61,146,66,141),(62,147,67,142),(63,148,68,143),(64,149,69,144),(65,150,70,145),(71,156,76,151),(72,157,77,152),(73,158,78,153),(74,159,79,154),(75,160,80,155)], [(1,64,24,44),(2,65,25,45),(3,61,21,41),(4,62,22,42),(5,63,23,43),(6,66,26,46),(7,67,27,47),(8,68,28,48),(9,69,29,49),(10,70,30,50),(11,71,31,51),(12,72,32,52),(13,73,33,53),(14,74,34,54),(15,75,35,55),(16,76,36,56),(17,77,37,57),(18,78,38,58),(19,79,39,59),(20,80,40,60),(81,141,101,121),(82,142,102,122),(83,143,103,123),(84,144,104,124),(85,145,105,125),(86,146,106,126),(87,147,107,127),(88,148,108,128),(89,149,109,129),(90,150,110,130),(91,151,111,131),(92,152,112,132),(93,153,113,133),(94,154,114,134),(95,155,115,135),(96,156,116,136),(97,157,117,137),(98,158,118,138),(99,159,119,139),(100,160,120,140)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39),(41,46),(42,50),(43,49),(44,48),(45,47),(51,56),(52,60),(53,59),(54,58),(55,57),(61,66),(62,70),(63,69),(64,68),(65,67),(71,76),(72,80),(73,79),(74,78),(75,77),(81,91),(82,95),(83,94),(84,93),(85,92),(86,96),(87,100),(88,99),(89,98),(90,97),(101,111),(102,115),(103,114),(104,113),(105,112),(106,116),(107,120),(108,119),(109,118),(110,117),(121,136),(122,140),(123,139),(124,138),(125,137),(126,131),(127,135),(128,134),(129,133),(130,132),(141,156),(142,160),(143,159),(144,158),(145,157),(146,151),(147,155),(148,154),(149,153),(150,152)]])

92 conjugacy classes

class 1 2A···2G2H2I4A···4L4M···4R5A5B10A···10N20A···20AV
order12···2224···44···45510···1020···20
size11···120202···220···20222···22···2

92 irreducible representations

dim11111122222222
type+++++++++
imageC1C2C2C2C2C4D4D5C4○D4D10C4×D5D20C5⋊D4C4○D20
kernel(C2×C42)⋊D5C10.10C42C2×C10.D4C2×D10⋊C4C2×C4×C20D10⋊C4C2×C20C2×C42C2×C10C22×C4C2×C4C2×C4C2×C4C22
# reps121318428688832

Matrix representation of (C2×C42)⋊D5 in GL6(𝔽41)

100000
010000
0040000
0004000
0000400
0000040
,
100000
010000
0024100
00401700
0000399
000042
,
900000
090000
0040000
0004000
00002340
00003618
,
610000
4000000
000100
00403400
0000351
0000540
,
010000
100000
000100
001000
00004040
000001

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,24,40,0,0,0,0,1,17,0,0,0,0,0,0,39,4,0,0,0,0,9,2],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,23,36,0,0,0,0,40,18],[6,40,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,1,34,0,0,0,0,0,0,35,5,0,0,0,0,1,40],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,40,1] >;

(C2×C42)⋊D5 in GAP, Magma, Sage, TeX

(C_2\times C_4^2)\rtimes D_5
% in TeX

G:=Group("(C2xC4^2):D5");
// GroupNames label

G:=SmallGroup(320,567);
// by ID

G=gap.SmallGroup(320,567);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,232,758,58,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^4=d^5=e^2=1,e*b*e=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽